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Abstract. This article sets forth a practical methodology for uncertainty quantification of physical state esti-4
mates derived from remote sensing observing systems. Remote sensing instruments observe parts of5
the electromagnetic spectrum and use computational algorithms to infer the underlying true physical6
states. In current practice, many sources of uncertainty are not accounted for in this process, leading7
to underestimates of uncertainties on quantities of interest. We propose a procedure that combines8
Monte Carlo simulation experiments with statistical modeling to approximate distributions of un-9
known true states given point estimates of those states. Our method is carried out post hoc; that is10
after the operational processing step. We demonstrate the procedure using four months of data from11
NASA’s Orbiting Carbon Observatory-2 mission and compare to validation measurements from the12
Total Column Carbon Observing Network.13
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1. Introduction. The ability of space-borne remote sensing observations to address im-17

portant Earth and climate science problems rests crucially on how well geophysical quantities18

of interest (QOIs) can be inferred from these data. Observing systems that collect and process19

this information must address uncertainties arising not only from measurement errors, but also20

from imperfect physical models and their parameters, computational artifacts, and potentially21

other unknowns that affect the conversion of observations to QOI estimates. While much of22

this sounds familiar in the context of the Uncertainty Quantification discipline [32], existing23

techniques do not address the problem in a practical way that can be applied comprehensively24

to very large data sets produced in routine operations.25

A remote sensing observing system is an infrastructure that senses electromagnetic energy26

and converts it into estimates of nature’s true states. In this paper, we consider a system in27

which observations are collected over different wavelengths as a spectrum of measured radi-28

ances. These spectra carry information about the properties of the Earth’s atmosphere and29

surface, as encountered in each individual observational unit corresponding to a specific ground30

footprint (also sometimes called a “sounding”), because photons at different wavelengths are31

scattered and absorbed in characteristic ways, depending on the make-up, function, and prop-32

erties of physical constituents with which photons interact. Inference about QOIs from a noisy33

radiance spectra is a fundamental problem of remote sensing science. It requires knowledge34

of the physics of radiative transfer [4], and substantial computational resources, especially35

for operational satellite systems which can return terabytes of data per day corresponding to36

millions of cases. In nearly all cases, there are only a few, sparse measurements from surface or37
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aircraft instruments with which to validate or calibrate the satellite measurements, and these38

corroborating data also come with their own uncertainties. Finally, for most existing missions,39

uncertainty quantification must be done post hoc without rerunning computationally costly40

data processing algorithms.41

Various authors have addressed the problem of uncertainties in satellite derived estimates42

of geophysical QOIs. Some papers (e.g., [31, 39, 51]) qualify as a general call to arms. Others43

such as [1, 20, 27] use ground-based validation data in highly restricted case studies to ascertain44

error characteristics under specific conditions. Numerous other examples can be found in45

[51]. For operational missions, [37, 36] used the linear sensitivity (first derivative) of the46

forward radiative transfer model to propagate radiance measurement error forward through47

their computations. Unlike the case-study-based methods, this method is applied in a way that48

produces, in principle, a nominal variance for each and every sounding. [30] used a Monte Carlo49

simulation to quantify uncertainty of their estimates without assuming linearity. However, this50

analysis was performed only after aggregating to coarse spatial resolution, and only addressed51

uncertainty due to geographic sampling issues and to several specific methodological choices52

implemented in their processing stream.53

More recently, Bayesian methods have become popular, as they produce probability distri-54

butions of the QOI given the observed quantities rather than point estimates alone. Markov55

chain Monte Carlo (MCMC) is sometimes used in small applications and case studies (e.g.,56

[18, 38, 3, 24]). MCMC is too computationally intensive for routine operational use though.57

Instead, “optimal estimation” (OE) [42, 43] has been widely adopted as the de facto state-58

of-the-art (e.g., [52, 21, 25, 50]). OE is a computational implementation of Bayes Rule that59

produces (implied Gaussian) probability distributions for true QOIs given radiances.60

Some argue that OE automatically achieves uncertainty quantification [50] because it pro-61

duces output that can be interpreted as the moments of a distribution. However, operational62

implementations and limited physical knowledge result in uncertainties that impact the reli-63

ability of OE itself. For example, while the equations of radiative transfer are relatively well64

understood, operational codes must run quickly and usually approximate some processes (or65

indeed ignore them completely). Tables of spectroscopic information that describe spectral66

absorption patterns induced by different gases, and sensitivities of detectors and other parts67

of the optical system, are derived from ground-based experiments. All are assumed fixed68

and known, even though they are uncertain. Even the discretizations of continuous physical69

quantities that define the state and radiance vectors, the grids used by numerical solvers, and70

the optimization routines used to solve for the QOI can induce uncertainty, both individually71

and as a result of high-order interactions.72

Neither OE nor earlier approaches quantify total uncertainty on a sounding by sounding73

basis. They do not quantify total uncertainty because they rely on enumeration of specific74

known source of uncertainty to be propagated, and do not include the elusive unknown un-75

knowns. These methods cannot be applied on a sounding-by-sounding basis because they76

require ground truth validation data that are not universally available. In this article, we77

propose a new method for estimating probability distributions for QOIs that is free of these78

restrictions. We derive conditional distributions of the QOI, given the operational point es-79

timates, by fitting the parameters of a Gaussian mixture regression model to an ensemble of80

simulated true and estimated states. Then, we use the fitted mixture of regression functions to81
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define the desired conditional distributions by plugging in sounding-specific operational point82

estimates as predictors. This is a “top-down” approach that does not require enumeration of83

individual uncertainty sources. Once the parameters of the Gaussian mixture are fitted, it is84

fast and easy to compute the sounding-specific conditional distributions.85

Our method can be seen as a modified and extended version of the the bootstrap bias86

correction [12, 10, 23]. There, one starts with a single sample, and draws a set of resamples87

from it. The statistic of interest is computed from the original sample, and from the resamples.88

The discrepancy between (the mean of) the resampled statistics and the original statistic is89

used as a proxy for the relationship between the original statistic and the true parameter.90

Here, our analog of the resamples is a simulated joint ensemble of true and estimated QOIs.91

However, we go beyond correcting for bias alone with two innovations. The first is that92

we derive approximations for the full conditional distributions of the true states given the93

operational state estimates. The second is that we use both the simulated and operationally-94

derived information together to approximate forward model discrepancy and account for it95

as part of total uncertainty. As far as we know there are no comparable methods in either96

the uncertainty quantification or remote sensing literature that deliver such comprehensive97

probabilistic descriptions of uncertainties associated with operational remote sensing state98

estimates.99

To demonstrate and evaluate our methodology, we apply it to data from NASA’s Orbiting100

Carbon Observatory-2 (OCO-2) mission. See [6] for an overview of the mission and statistical101

issues surrounding its processing and scientific value. OCO-2 uses OE to infer the distribu-102

tion of its primary QOI, total column mole-fraction of CO2 (known as XCO2 in the remote103

sensing community) by sounding. While our method is equally applicable to vector-valued104

QOIs, XCO2 is a scalar quantity; this simplifies visualization and analysis. Another reason to105

highlight OCO-2 is its stringent uncertainty requirements. The primary scientific application106

of OCO-2’s estimates is as input to flux inversion (data assimilation) models [17, 35, 49] that107

estimate the exchange of carbon between Earth’s surface and atmosphere. Determination of108

flux requires CO2 estimates with high accuracy (less than 0.3 parts per million (ppm) in scenes109

with background levels of around 410 ppm), and high precision (standard errors less than 0.5110

ppm). Consequently, uncertainty quantification has been a major focus of the OCO-2 science111

endeavor.112

Members of the OCO-2 team have performed various studies that attempt to quantify113

uncertainties in its retrieved estimates (e.g., [5, 53]). However, many of these stay wholly114

within the optimal estimation, linear Gaussian framework, and are therefore not able to assess115

uncertainties due to failure of those assumptions. Alternatively, Cressie and co-authors [7, 8]116

investigated the impact of non-linearity of the forward model on both mean and variance117

estimates produced by OE. These analyses yield valuable insights into the performance of118

OE, but do not represent an attempt to evaluate or quantify total uncertainty expressed by119

operationally-derived distributions.120

The remainder of this article is organized as follows. First, we articulate our reference121

statistical model for remote sensing observing systems (Section 2), and then the methodology122

for estimating conditional distributions of true states given their point estimates (Section123

3). In Section 4 we describe how we tailor our method for the case of OCO-2, and evaluate124

the results through comparisons with available ground truth information. The final section125
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contains a summary and discussion.126

2. Statistical model of an observing system and its output. An observing system rep-127

resents the flow of information from nature, which produces the quantities of interest, to the128

space-borne hardware that collects radiances, and finally to the software that performs esti-129

mation of the QOIs from these observations. Consider Figure 1. The state vector is X =130

(X1,X2, . . . ,XLX
)′ and it, or some part of it, usually is the quantity of interest. Nature’s for-

X F0(·,b0) Y0 + ε Y R(·, F1, . . . ,b1) X̂

Nature Instrument Estimation

Figure 1. Schematic diagram of a generic observing system.

131
ward function, F0, converts X into the noiseless radiance vector, Y0 = (Y01,Y02, . . . ,Y0LY

)′,132

which is observed by the remote sensing instrument with measurement error ε (also of di-133

mension LY). The forward function also typically depends on an additional set of variables,134

denoted by b0, that are not part of the state vector but nonetheless influence the transfor-135

mation of the state into noiseless radiances; e.g., spectroscopic absorption coefficients that136

characterize various atmospheric constituents. The distinction between F0 and b0 is an aca-137

demic one because they are confounded components of our model of nature, rather than138

properties of nature itself. Since they can’t be decoupled, we will always refer to them as a139

unit, F0(·,b0).140

The noisy radiance vector, Y = Y0 + ε is ingested into the retrieval algorithm– so-named141

because it retrieves the true state from the observations– to produce a point estimate of the142

true state, denoted by X̂ in the figure. In OE, X̂ can be interpreted as a conditional mean, and143

is accompanied by an estimate of the covariance matrix obtained via a linear approximation144

to the forward function.145

The retrieval algorithm depends on a forward model, F1, and its corresponding forward146

model parameters, b1, which are the best known practical approximations to F0 and b0,147

respectively. Arguably, F1 and b1 may be considered distinct, with F1 being implemented148

as algorithm computer code and b1 being a set of fixed, ancillary inputs provided to F1149

in addition to the radiances. The ellipses in the arguments to R in Figure 1 represent other150

required choices that must be made in order to run the retrieval algorithm code, and will affect151

the quality of the estimates. We call these “settings”. Examples include convergence criteria,152

the grid over which the algorithm will solve for the required optimum, etc. For compactness,153

we subsume settings into b1. Despite their potential separation in implementation, we consider154

F1(·,b1) to be a unit, as is the case with F0(·,b0).155

From an uncertainty quantification perspective, one might view Y as the primary input156

to a deterministic function R, and X̂ as the output for which uncertainty is to be quantified.157

In that case, we equate X̂ with some measure of location of P (X|Y). Alternatively, one158

might view X, though not directly observed, as the input to the composite system that159

includes nature, the instrument, and the retrieval process. From this point of view, we seek160

the conditional distribution P (X|X̂). This distribution reflects the uncertainty about X that161

remains after seeing X̂.162

The retrieval community takes the first perspective: F1 is fixed, and b1 is set by ad163
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hoc testing of different candidate values according to knowledge of the underlying physics.164

Comparisons of resulting values of X̂ to ground truth, where available, dictate the final fixed165

value of b1. The only source of uncertainty accounted for is that of the input radiance vector,166

Y. By treating F1(·,b1) as fixed, this procedure ignores the impact of uncertainties that may167

be induced by their misspecification. [19] showed that misspecifications of this sort can lead168

to both bias and variance in the retrieved quantities through unpredictable interactions and169

algorithm artifacts.170

Our perspective is that the uncertainty to be quantified is that of the entire, end-to-end171

observing system shown in Figure 1, and so our goal is to provide the conditional distribution172

P (X|X̂). For each X̂ we approximate P (X|X̂) via a Gaussian mixture model (GMM) in which173

the component-wise means, variances, and mixing probabilities are functions of the realized174

value of X̂. Those functions are estimated from a simulation experiment that 1) incorporates175

a model discrepancy term to account for structural and parametric model uncertainty, and176

2) borrows strength over a representative ensemble of synthetic state vectors to account for177

the range of conditions to which the model must apply. The simulation experiment allows us178

to quantify the aggregate impact of uncertainties due to both known and unknown sources179

because we know the “truth”. Once the parameters of the GMM are estimated, the conditional180

distributions of the true states given actual retrieved estimates are obtained by plugging the181

retrieved values into the estimated regression equations. This method is applicable regardless182

of whether X̂ is a least squares, OE, or any other type of estimate.183

The approach requires that we simulate a realistic ensemble of synthetic true states and184

generate corresponding ensembles of radiances and retrieved state estimates. The simulated185

true state ensemble need not be identical to nature’s true ensemble, just realistic in the sense186

that it spans the range of plausible true states the observing system is likely to encounter.187

Procedures for creating this ensemble will vary by application and even by analyst since188

“plausible” is subjective. Likewise, the forward propagation of the ensemble through F0(·,b0)189

in the simulation, is application and analyst-specific since nature’s true forward function is190

unknown, but must be represented in some way and be distinct from F1(·,b1). In Section 4,191

we demonstrate our solutions to these problems for OCO-2.192

We stress that a major restriction on our work for OCO-2 and for other existing missions193

is that UQ must be performed post hoc. The design and implementation of the operational194

retrieval algorithm cannot be changed nor can it be interfered with. Uncertainty quantification195

must be after the fact. Consequently, our goal here is only to obtain an honest estimate of196

total uncertainty, not to break it down into contributing factors or to reduce it.197

Our framework uses the following statistical model based on Figure 1.198

X ∼ PX(x;θX), Y0 = F0(X,b0), Y = Y0 + ε, ε ∼ MVN(0,Σε),199

θX = {µX,ΣX, . . .}, and X̂(Y,b1) = R(Y, F1,b1).(2.1)200201

All variables in bold are column vectors or matrices, except θX which denotes a set of param-202

eters. The dimensions of X, µX and X̂ are LX× 1. The dimensions of Y0, Y, ε, and the zero203

vector are LY × 1. The matrix ΣX is of dimension LX × LX, and Σε and is LY × LY. The204

vector b0 contains both known and unknown quantities set by nature, and has unspecified205

length. Finally, b1 is a fixed, known column vector containing all parameters necessary to run206
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the retrieval.207

This model prescribes that nature draws a true state vector from PX having parameter208

vector θX. From the standpoint of the retrieval algorithm, the true state, its distribution, and209

the measurement error ε, are all unknown. We will, however, assume that the statistics of ε are210

known, as would be the case from pre-launch calibration studies. Radiance measurement errors211

are assumed to be multivariate normal with zero mean and known covariance matrix Σε. The212

only input to R subject to randomness in Equation (2.1) is therefore Y. All other quantities213

on which R depends are fixed at nominal values using expert judgement and modified, if214

necessary, to conform to computational requirements.215

3. Approach and methods. The foundation of our approach is the statistical model given216

by Equation (2.1), overlaid with our view that the computational machinery of the observing217

system is a complex estimator who’s performance is summarized by P (X|X̂). This condi-218

tional distribution may be derived from the joint distribution P (X, X̂), which contains all the219

information about the uncertainty X̂ as an estimate of X [11, 48]. Since we do not know the220

true joint distribution, we appeal to resampling to provide a synthetic ensemble that is our221

best empirical representation of it.222

3.1. Methodology. Our general strategy is summarized in Figure 2. The first row of this223

flowchart roughly mirrors Figure 1, but with a number of important modifications. First, P̃224

plays the role of nature. An ensemble of simulated true states are drawn from it. This set225

of M simulated state vectors is the (M × LX) data matrix,
{
Xsim
m

}M
m=1

≡
(
Xsim

1 , . . . ,Xsim
M

)′
,226

and we call it the synthetic true state ensemble. It represents a set of plausible, alternative227

realizations of the state vector that the observing system is likely to encounter. We will usually228

suppress the indices on the bracket notation for brevity.229

Second, Figure 1 shows that the state vector is converted by nature’s true forward func-230

tion, F0(·,b0), into a noiseless radiance, Y0, which is then observed by the instrument with231

measurement error ε. Figure 2 shows the transformation by the forward model, F1(·,b1). This232

is because in practice we do not know nature’s true forward function; all we have is our best233

forward model which will also be used in the retrieval process in the second row of Figure 2.234

It is overly optimistic to assume that the forward model used in the retrieval is identical235

to nature’s true forward function. To compensate, we add an extra component of noise to236

the synthetic, noiseless radiance ensemble
{
Ysim

0

}
, as shown in the right-most box on the237

first row of Figure 2. This model discrepancy term is δsim and is an independent draw from a238

multivariate Gaussian distribution with mean vector and covariance matrix that are estimated239

off-line from spectral residuals that can be produced by any retrieval algorithm, and by our240

simulation. Spectral residuals are the differences between the observed radiances and the241

radiances implied by the forward model, evaluated at the converged estimate of the state.242

Section 4.1.4 and Appendix C describe how we estimate the mean vector and covariance243

matrix of the distribution of δsim from the ensembles of available spectral residuals.244

The second row of Figure 2 shows how the simulated noisy radiance ensemble,
{
Ysim

}
, is245

input to the retrieval algorithm to produce the corresponding retrieved estimates. We form246

a synthetic training ensemble by pairing each simulated true state with its corresponding247

retrieval:
{

Xsim, X̂sim
}

. Then, we fit a Gaussian mixture model to this set, and subsequently248
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Synthetic true
state ensemble

Forward
function

Synthetic noiseless
radiance ensemble

Xsim ∼ P̃ (Xsim)

Marginal distribution

{
Xsim

}
F1(Xsim, b1)

{
Ysim

0

}
Y sim

0 + εsim+δsim

εsim ∼ MVN(0,Σε)

Measurement error

δsim ∼ MVN(µ̃δ, Σ̃δ)

Model discrepancy
adjustment

Instru-
ment

{
Ysim

}Observation
ensemble

R(F1,b1,Y
sim)

Retrieval{
X̂sim

}State estimate
ensemble

{
Xsim, X̂sim

}

P̃
(
Xsim

∣∣∣X̂sim
)

µ̂(k)(u), Σ̂
(k)

(u), πk|u

X̂ = u

Actual retrievals

P̃
(
X|X̂

)
Estimated conditional
distribution of state

P̃
(
Xsim, X̂sim

)

Figure 2. Conceptual diagram of the uncertainty quantification strategy.

derive 1) regression mean and variance functions for each mixture component, and 2) the249

conditional probabilities of component membership given the value of the predictors, X̂. Once250

these functions are estimated from the simulated ensemble, any new or operationally retrieved251

state estimate can serve as a predictor. We simply plug the predictor into the regression252

equations to obtain parameters of the Gaussian mixture component conditional distributions,253

and the conditional probability of component membership.254

The next subsection briefly reviews Gaussian mixture models, and the software we use for255

fitting them.256

3.2. Gaussian mixture models and software to fit them. The Gaussian mixture density257

for a multivariate random vector V is,258

fV(v) =

K∑
k=1

πk φ (v;µk,Σk) ,

K∑
k=1

πk = 1,(3.1)259

260

where φ (v;µk,Σk) is the multivariate normal density function with mean vector µk and261

covariance matrix Σk, evaluated at v; πk is the (mixing) weight of component k, and K is262
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the total number of components [29]. We abbreviate this density by,263

V ∼ GMM
(
K, {µk,Σk, πk}Kk=1

)
.(3.2)264

265

Given a sample, V1, . . . ,VN , the maximum likelihood estimates of the parameters of the266

model specified Equation (3.2) are,267 {
K̂, µ̂1, . . . , µ̂K̂ , Σ̂1, . . . , Σ̂K̂

, π̂1, . . . , π̂K̂

}
.268

269

R’s densityMclust function in the package mclust [47, 16] provides software for estimating270

these parameters. In addition, densityMclust returns another object that is key for our271

purposes. It is an N × K̂ matrix of conditional probabilities,272

π̂k|vn
= P̃ (κn = k|V = vn) =

π̂k φ
(
vn; µ̂k, Σ̂k

)
∑K̂

l=1 π̂l φ
(
vn; µ̂l, Σ̂l

) ,(3.3)273

274

for k = 1, . . . , K̂, n = 1, . . . , N . Here, κn is a random variable that indicates component275

membership: the probability that Vn comes from component k is π̂k before observing Vn,276

and π̂k|vn
after seeing Vn = vn [48].277

Equation (3.3) is, in some ways, the most fundamental quantity returned by this software.278

It provides a probabilistic mapping of the Vn to the K̂ Gaussian components of the model.279

This is critical if, say, one fits the model to standardized data but wants to report the result on280

the raw scale. For example, suppose Vn is partitioned into two sub-vectors that are measured281

on very different scales so one would influence the calculation disproportionately if a model282

was fitted to the raw data. Suppose V is dV-dimensional, and let Vn = (W′
n,U

′
n)′, where283

W is dW-dimensional, and U is dU-dimensional, and dV = dW + dU. It would make sense to284

fit the model to standardized versions of these variables by converting Wn to Z1n and Un to285

Z2n:286

Z1n = (Wn −mW)′C
−1/2
W and Z2n = (Un −mU)′C

−1/2
U ,(3.4)287288

where mW and CW are the mean vector and covariance matrix of W1, . . . ,WN , and mU289

and CU are defined similarly. Denote the standardized vector
˜
Vn = (Z′1n,Z

′
2n)′, and fit a290

GMM to
˜
V1,

˜
V2, . . . ,

˜
VN . Estimates of the component mean vectors and covariance matrices291

are on the standard scale (
˜
µ̂k and

˜̂
Σk), but can easily be recomputed from the raw data by292

calculating weighted averages and variances using the π̂k|vn
as weights:293

µ̂k =

N∑
n=1

vn

[
π̂k|vn∑N
m=1 π̂k|vm

]
,(3.5)294

Σ̂k =
N∑
n=1

(vn − µ̂k) (vn − µ̂k)
′

[
π̂k|vn∑N
m=1 π̂k|vm

]
.(3.6)295

296

In practice we will use R’s weighted.mean function to compute µ̂k, and the cov.shrink func-297

tion from the package corpcor [45] to compute shrinkage estimates of Σk.298
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The idea can be extended to other convenient transformations beyond simple standard-299

ization. In particular, if the dimension of V is large, densityMclust can be slow. In that300

case,
˜
V1,

˜
V2, . . . ,

˜
VN may be further transformed by projecting them into the space spanned301

by the leading principal components of V estimated from the (standardized) data. Let C
˜
V302

be the (empirical) covariance matrix of
˜
V1,

˜
V2, . . . ,

˜
VN , and let Ei be the i-th eigenvector303

of C
˜
V. The eigenvectors are arranged in order corresponding to the order of their descend-304

ing eigenvalues, λ1, λ2, . . . , λdV . The leading eigenvector matrix of C
˜
V is E, with columns305

E1,E2, . . . ,El, where l is the smallest value such that306 ∑l
i=1 λi∑dV
j=1 λj

≥ γ, 0 ≤ γ ≤ 1.(3.7)307

308

Finally, set309

¯
V =

˜
V E.(3.8)310311

The parameters of the model fit to
˜
V1,

˜
V2, . . . ,

˜
VN can be rescaled using Equations (3.5) and312

(3.6).313

3.3. Conditional mean and covariance functions. Given an estimate of the joint distri-314

bution of V = (W′,U′)′ of the form in Equation (3.1), it is well known that the estimate of315

the conditional mean function of W given U = un for component k is,316

µ̂
(k)
W|U(un) = µ̂

(k)
W + Σ̂

(k)

WU

(
Σ̂

(k)

UU

)−1 [
un − µ̂

(k)
U

]
,(3.9)317

318

where Σ̂
(k)

V is the estimated covariance matrix for component k, which is partitioned according319

to320

Σ̂
(k)

V =

 Σ̂
(k)

WW Σ̂
(k)

WU

Σ̂
(k)

UW Σ̂
(k)

UU

 .(3.10)321

322

The estimated conditional covariance matrix for component k is,323

Σ̂
(k)

W|U(un) = Σ̂
(k)

WW − Σ̂
(k)

WU

(
Σ̂

(k)

UU

)−1
Σ̂

(k)

UW.(3.11)324
325

If desired, summing over components gives the marginal moments,326

µ̂W|U(un) =
K̂∑
k=1

µ̂
(k)
W|U(un) π̂k|un

,(3.12)327

328

and329

Σ̂W|U(un) =

K̂∑
k=1

Σ̂
(k)

W|U(un) π̂k|un
+330

K̂∑
k=1

(
µ̂
(k)
W|U(un)− µ̂W|U(un)

)(
µ̂
(k)
W|U(un)− µ̂W|U(un)

)′
π̂k|un

,(3.13)331

332

This manuscript is for review purposes only.
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where333

π̂k|un
=

π̂k φ
(
un; µ̂

(k)
U (un) , Σ̂

(k)

UU

)
∑K̂

l=1 π̂l φ
(
un; µ̂

(l)
U (un) , Σ̂

(l)

UU

) .(3.14)334

335

Equations (3.12) and (3.13) follow from the follow from the law of iterated conditional expec-336

tation (e.g., [41], Equations (2b.3.4) and (2b.3.6)).337

3.4. Conditional distribution of the true state given a retrieved state. The conditional338

distribution for a new draw from the distribution of U, call it U∗ with realization u∗, is339

W∗ ∼ GMM

(
K̂,

{
µ̂
(k)
W|U (u∗) , Σ̂

(k)

W|U (u∗) , π̂k|u∗
}K̂
k=1

)
.(3.15)340

341

One can explore this distribution by simulating from it, and summarize it (approximately) by342

calculating any desired summary quantities from the ensemble of simulated realizations.343

3.5. A simple example. To illustrate the main aspects of our procedure, we appeal to a344

simple, low-dimensional example shown in Figure 3. The left panel shows a scatterplot of two345

(scalar) variables that exhibit a relationship (Equation (3.16)) that could be representative of346

a realistic, worst-case scenario. Not only is it non-linear, but the variances are heteroskedastic.347

W ∼ N(5, 1), U = (1.75)W + ε, ε ∼ N(1, 2).(3.16)348349

There are a total of M = 5000 (um, wm), pairs in the plot. The top-left panel shows the350

forward relationship between the two variables, with w analogous to realizations of W, and u351

analogous to realizations of U in the subsections above. The top-right panel shows the inverse352

problem in which the goal is to infer w from noisy and potentially biased u. The bottom-right353

panel shows the estimated joint distribution of u and w fitted to these data using mclust.354

The values of both variables are standardized prior to fitting the model, and w is transformed355

back to its original scale. The joint distribution is a six-component Gaussian mixture, shown356

superimposed on the scatterplot, as six sets of Gaussian contours (the .68 and .95 contours).357

The corresponding component-specific regression lines for predicting w from u are shown in358

the bottom-right panel. For the k-th mixture component, the conditional mean, variance, and359

component membership probabilities of W given U = u are scalar versions of Equations (3.9),360

(3.11), and (3.14).361

Now suppose a new value of U = u∗, is acquired and we wish to obtain the conditional362

distribution of W given U = u∗. Equipped with Equations (3.9) through (3.14), we first363

simulate B = 1000 (say) iid draws from the discrete distribution that places probability364

πk|u∗ on the indices k = 1, 2, 3, 4, 5, 6, and encode these outcomes in the random vector κ =365

(κ1, κ2, . . . , κB)′ of length B. Then, for each element of κ we draw a random realization, w∗b ,366

from the N
(
µ(κb)(u∗), σ(κb)(u∗)

)
, where µ is the scalar version of µ, and σ is the scalar version367

of Σ. The histogram of w∗b , b = 1, 2, . . . , B is an approximation of the conditional distribution368

of W given U = u∗. Figure 4 shows the simulated conditional distributions for two values369

of u∗, 13.76 and 22.41. Visual inspection suggests that the conditional standard deviations370

should decrease as one moves towards higher values of u∗, which they do.371

This manuscript is for review purposes only.
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Figure 3. Simple example of fitting a GMM to an empirical ensemble, {um, wm}5000m=1. Top-left: scatterplot
of u on w showing the forward relationship. Top-right: scatterplot of w on u showing the inverse relationship.
Bottom-left: Six-component GMM fitted to the joint distribution of u and w. Two density contours capturing
68 and 95 percent of the central mass of the Gaussian components are shown. Bottom-right: component-wise
regression lines for the model. Component-wise variance is the vertical dispersion around the regression line
at a fixed point on the x-axis. In the latter three plots, the u values have been standardized by subtracting the
sample mean, ū and dividing by the sample standard deviation, su.
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Figure 4. Simulated conditional densities of W given U∗ = 13.76 (left panel) and U∗ = 22.41 (right panel).
w∗ is on the standardized scale.
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12 A. BRAVERMAN, J. HOBBS, J. TEIXEIRA, AND M. GUNSON

Figure 5 displays results of a cross-validation experiment that compares nominal and actual372

coverage probabilities for 50 percent and 95 percent confidence intervals. In this experiment,373

we use the same 5000 (u,w) pairs shown in the center panel of Figure 3. We randomly divide374

these into a training set of 2500 (u,w) pairs, and a test set of 2500 (u∗, w∗) pairs. We fit a375

GMM to the training set, plug each value of u∗ in the test set into the Equations (3.9) through376

(3.14), and simulate 1000 draws from the posterior distributions of W ∗ given U∗. Finally, we377

compute the 0.025, 0.250, 0.750, and 0.975 quantiles of each of these empirical conditional378

distributions (Q.025, Q.25, Q.75, and Q.975) and determine what proportion of the 2500 test379

set pairs have the property that w∗ lies inside the 95 percent interval defined by [Q.025, Q.975],380

and similarly, inside the 50 percent interval defined by [Q.25, Q.75].381

p.95,1 =
1

2500

2500∑
i=1

1 [Q.025 ≤ w∗i ≤ Q.975] ,382

p.50,1 =
1

2500

2500∑
i=1

1 [Q.25 ≤ w∗i ≤ Q.75] .(3.17)383

384

We carry out this entire simulation procedure 200 times to obtain p.95,b and p.50,b, for b =385

1, 2, . . . , B = 200. Figure 5 shows that the actual coverage probabilities are always, or nearly386

always, consistent with the nominal coverage probabilities.

Fr
eq
ue
nc
y

0.49 0.51 0.53 0.55

0
10

20
30

Fr
eq
ue
nc
y

0.955 0.965 0.975 0.985

0
10

20
30

40

Figure 5. Histograms of actual proportions of test set values of w contained within the central 50 percent
(left) and 95 percent (right) of the estimated conditional distribution of W given U , over 200 trials of the
simulation experiment. In each trail, a randomly selected half of the (u,w) pairs in Figure 3 were assigned to
the training set, and other other half to the test set.

387

In the next section we describe in detail how we implement our approach for our motivating388

application, the Orbiting Carbon Observatory-2 mission. It is considerably more complex than389

the simple example just presented, but nonetheless analogous in many respects. The main390

difference is that the predictor is high-dimensional, although the predictand remains a scalar.391

Other differences include the fact that we did not need to deal with model discrepancy in392

the simple example, but we do for OCO-2; and perhaps most importantly, how we set up393

the simulation experiment that allows us to learn the mechanistic properties of the retrieval394

estimator.395

4. Application to OCO-2. NASA’s OCO-2 instrument was launched into Earth orbit396

on July 2, 2014. Its primary scientific objective is to estimate total column concentrations397
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(dry air mole-fractions) of carbon dioxide for use in estimating carbon fluxes between Earth’s398

surface and atmosphere. Details of the OCO-2 mission and its retrievals can be found in399

[2, 14, 9, 13, 6]. OCO-2, along with Japan’s GOSAT [44, 57] and GOSAT-2 missions, China’s400

TanSAT [56], and OCO-3 [15] now form a fleet of observing systems that all use similar401

technology, including optimal estimation for retrievals. What we describe below for OCO-2 is402

also applicable to these and other missions potentially observing other variables, with suitable403

modifications.404

The primary OCO-2 QOI is total column mole-fraction of CO2, called XCO2. It is the405

number of molecules of carbon dioxide divided by the number of molecules of dry air (total air406

molecules minus water molecules), in a vertical column of the atmosphere. This quantity is407

derived on a sounding-by-sounding basis for cloud-free, trapezoidal ground footprints measur-408

ing 2.25 km along-track and 1.29 km across-track during the spacecraft’s south-to-north polar409

orbit. The OCO-2 state vector, X, includes a 20-element vertical profile of estimated CO2410

mole-fractions at various altitudes, as well as quantities describing aerosol, cloud, and surface411

properties. XCO2 is a scalar quantity computed by multiplying the CO2 profile, X1:20, by a412

location-specific pressure weighting function, h,413

X = h′X1:20.(4.1)414415

In the next subsection, we provide details of how we applied our methodology described in416

Section 3 specifically for the OCO-2 case.417

4.1. Post hoc uncertainty quantification. We applied our method to a set of retrievals418

from the OCO-2 Version 7 data product [13] for week-long periods over four months spanning419

the four seasons: August and November 2015 and February and May 2016. Here, we report420

results for retrievals that are coincident in time and space with ground-based measurements421

that are considered, for practical purposes, ground truth.422

Figure 6 is a modified version of Figure 2 that shows our implementation for OCO-2. The423

main steps are described in the following sub-sections. Green section numbers in parentheses424

in the figure direct the reader to relevant sections of the text.425

4.1.1. Generating synthetic true state ensembles. In Figure 6, the single marginal dis-426

tribution in Figure 2 is replaced by a set of distributions, P̃r, r = L1, . . . ,L11. The index r427

refers to sub-regions of the globe we call templates. Figure 7 shows the geographic domains of428

41 such regions defined by colleagues in the user community who specialize in flux inversion.429

We asked these domain experts to define areas over which we could expect the behavior of430

OCO-2 state vectors, over a single calendar week, to be representative of specific underlying431

physical processes generating them. This allows us to invoke the standard assumption of er-432

godicity in time and space. We carried out these simulations for all land and ocean regions433

with sufficient OCO-2 data. However, here we present results for land regions only because434

this is where corroborating ground-based information is available.435

Next, we fitted multivariate Gaussian mixture models to collections of actual, retrieved436

OCO-2 state vectors belonging to the templates, and in a single calendar week. We sampled437

5000 times from each of these distributions to generate template-week-specific ensembles of438

synthetic true states. Sampling from the fitted distributions is a semi-parametric analog to439

bootstrap resampling typically used in the bootstrap bias correction. Finally, we combined440
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14 A. BRAVERMAN, J. HOBBS, J. TEIXEIRA, AND M. GUNSON

Synthetic true
state ensemble

Forward
function

Synthetic noiseless
radiance ensemble

Xsim ∼ P̃r(Xsim), r = L1, . . . ,L11

Marginal distribution

(4.1.1, Appendix A)

{
Xsim

land

}
F1(Xsim, b1)

(4.1.2, Appendix B)

{
Ysim

0

}
Y sim

0 + εsim+ δsim

εsim ∼ MVN(0,Σε)

Measurement error
(4.1.3)

δsim ∼ MVN(µ̃δ, Σ̃δ)

(4.1.4, Appendix C)

Model discrepancy
adjustment

Instru-
ment

{
Ysim

} Observation
ensemble

R(F1,b1,Y
sim)

(4.1.5)

Retrieval{
X̂sim

}State estimate
ensemble

h′(·)

{
Xsim, X̂sim,

(
X̂sim

)′ }
(4.1.6)

P̃
[
Xsim|X̂sim, X̂sim

](4.1.8)

µ̂(k)(·), σ̂(k)(·), π
k|u=

(
X̂,X̂′

)′

{
X̂, X̂

}Actual retrievals

{
P̃
(

X|X̂, X̂
)}

(4.1.9)

Estimated conditional
distribution of XCO2

P̃
[
Xsim, X̂sim, X̂sim

](4.1.7)

Figure 6. Conceptual diagram of the uncertainty quantification strategy for OCO-2’s OE retrieval. Green
numbers in parentheses indicate subsections containing detailed explanations.

the eleven synthetically created ensembles to form the synthetic true state ensemble, {Xsim},441

for the week being processed:442

Xsim
land ≡

 Xsim
L1
...

Xsim
L11

 .(4.2)443

444

Appendix A provides additional details of model fitting and resampling. The stacked matrices445

in Equation (4.2) are abbreviated by {Xsim} in Figure 6.446

4.1.2. The forward function and its parameters. We applied the OCO-2 forward model,447

F1, to each simulated true state vector in Xsim
land. F1 is the same forward model used opera-448

tionally by OCO-2 in Version 7 of its Atmospheric Carbon Observations from Space (ACOS)449

retrieval algorithm [13, 34]. The ACOS forward model is often termed “full-physics” (FP).450

Further details are provided in Appendix B and [2].451
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Figure 7. Forty-one regions defining the spatial partitioning of OCO-2 data for template definition. There
are 30 ocean regions with labels prefixed by “S”, and 11 land regions with labels prefixed by “L”.

4.1.3. Measurement error. The simulation of the measurement error,452

εsim ∼ MVN(0,Σε),453454

follows the OCO-2 instrument noise specification [14]. The noise covariance matrix Σε is455

diagonal with elements456

σ2ε,i = var
(
εsimi

)
= bε,1,iY

sim
0,i + bε,2,i,(4.3)457458

where the bε,1,i and bε,2,i are instrument calibration parameters, and i indexes elements in the459

radiance vector. This model suggests the noise variance is proportional to the mean signal,460

with an additive offset.461

4.1.4. Model discrepancy adjustment. In Figure 6 we used the same forward model462

and forward model parameters to produce both simulated radiances and to retrieve the state463

estimate from them (see Subsection 4.1.2). This is overly optimistic since it implies that the464

retrieval’s forward model is a perfect representation of nature’s true forward function. On the465

other hand, the true forward function F0(·,b0) is not known, and the best available forward466

model is F1(·,b1). To compensate for this, we added an additional component of random467

error to the radiance vectors which we believe realistically degrades the radiances to account468

for using F1(·,b1) where we should have used F0(·,b0). We degraded the radiance vector by469

adding this “model discrepancy” adjustment, δsim, at the same time we added ε to mimic470

measurement error of the instrument.471

The model discrepancy adjustment is an (LY × 1)-dimensional perturbation modeled as472

a draw from a multivariate Gaussian distribution with mean µ̃δ and covariance matrix Σ̃δ.473

The Gaussian choice is for convenience, and may be revisited in the future. We estimated474

model parameters by comparing distributions of the spectral residuals in the simulation with475

those produced by the actual OCO-2 retrieval process. Spectral residuals are the differences476

between the observed OCO-2 radiance vectors and the radiance vectors predicted by applying477
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the OCO-2 forward model to the retrieved state vector estimate. Appendix C describes in478

detail how we estimate the parameters µ̃δ and Σ̃δ.479

4.1.5. The retrieval. The OCO-2 operational retrieval was performed for each Ysim. The480

retrieval’s assumed statistical parameters b1, including the prior mean vector and covariance481

matrix used in OE, were set to the operational values present at a reference sounding at482

the geographical center of the template to which Ysim belonged. The operational retrieval483

performs a numerical search for the minimum of an objective function that includes the484

Gaussian negative log-likelihood of the radiances and a regularization term due to a Gaussian485

prior distribution specified as part of OE. This was implemented with a Levenberg-Marquardt486

algorithm with step sizes, relaxation, and convergence criteria defined for the operational487

retrieval [2]. The OCO-2 inverse problem is moderately non-linear [5], so these optimization488

parameters can impact the overall retrieval quality. We retained those retrievals X̂sim that489

successfully converged within the allowed number of iterations, and discarded those that did490

not.491

4.1.6. Assembling the empirical joint distribution. We used the set of synthetic true492

states and their corresponding synthetic retrieved state vectors to form an empirical sample493

of the joint distribution of the two. The QOIs were XCO2 values, Xsim, created from the494

synthetic true state vectors using Equation (4.1). The predictors were the corresponding495

synthetic retrieved state vectors, X̂sim, with retrieved XCO2 derived from them: X̂sim =496

h′Xsim
1:20, appended. The training ensembles used to estimate the GMM parameters for the497

resampling step were,498 {
Xsim
m , X̂sim

m ,
(
X̂sim
m

)′ }Mland

m=1
,(4.4)499

500

where Mland =
∑L11

r=L1Mr, and Mr was the number of successful simulated retrieved state501

vectors in template r. It may seem that including X̂sim
m as a predictor duplicates the infor-502

mation already in X̂sim
m . It does not: X̂sim

m includes the pressure weighting function. Offline503

experiments strongly suggested that predictions of Xsim
m improve substantially when X̂sim

m is504

included as a predictor.505

We made one further modification to the training ensembles before estimating the joint506

distributions of predictors and predictands: six elements of the state vector were removed507

because they were found to degrade the predictions of Xsim. The deleted elements were coef-508

ficients describing the distributions of cloud ice and liquid water in the atmospheric column.509

4.1.7. Fitting the Gaussian mixture model. To estimate the joint distribution of XCO2510

and the predictors from the empirical ensembles in Equation (4.4), we followed the method-511

ology described in Section 3.2, with512

V =
(

Xsim, X̂sim,
(
X̂sim

)′ )′
.(4.5)513

514

To increase speed in the density estimation step, we reduced the dimension of V by converting515

the variables that will play the role of predictors to their corresponding values in the space of516
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their leading principal components. To be clear, we partitioned V = (W,U′)′ where517

W = Xsim, and U =
(

X̂sim,
(
X̂sim

)′ )′
.(4.6)518

519

In determining leading eigenvectors, we used the threshold γ = 0.99 here. (See Equation (3.7).)520

We used densityMclust function (in the R package mclust) to fit a family of Gaussian mixture521

models. The software requires us to specify the maximum number of allowable components,522

and it uses the Bayesian Information Criterion to select the best model. We set the maximum523

to 20 on the grounds 1) the number should exceed the number used for estimating GMM’s524

for individual template-weeks in the resampling stage (see Appendix A), and 2) the number525

should be small enough to be interpretable and to achieve moderate computational speed.526

The last step was to use the datum-specific weights in Equation (3.3) to convert the model’s527

estimated parameters back to the original scale of the data via the formulas in Equation528

(3.6). The values of the parameters K̂sim and π̂sim1 , π̂sim2 , . . . , π̂sim
K̂sim

remained unchanged. The529

estimated mixture density for land in a given calendar week is,530 (
Xsim, X̂sim,

(
X̂sim

)′ )′
= (W,U)′ ∼ GMM

(
K̂sim,

{
µ̂sim
k , Σ̂

sim

k , π̂simk

}K̂sim

k=1

)
,(4.7)531

532

where533

µ̂ sim
k =

(
µ̂ sim
kW ,

(
µ̂ sim
kU

)′)′
, and Σ̂

sim

k =

 σ̂ sim
kWW Σ̂

sim

kWU

Σ̂
sim

kUW Σ̂
sim

kUU

 ,(4.8)534

535
536

4.1.8. Estimating the conditional distribution of XCO2 given retrieval predictors. We537

use Equations (3.9) through (3.14) to compute the Gaussian components’ conditional means538

and variances of XCO2, given actual OCO-2 retrievals, u∗ =
(

X̂, X̂′
)

. Thus, for each actual539

OCO-2 sounding, u∗, we have the conditional distribution,540

W∗ ∼ GMM

(
K̂sim,

{
µ̂
(k)
W|U(u∗), σ̂

(k)
W|U(u∗), π̂k|u∗

}K̂sim

k=1

)
.(4.9)541

542

4.1.9. Simulating from sounding-specific conditional distributions of XCO2. These dis-543

tributions can be approximated by simulating from Equation (4.9), and summary statistics544

can be computed as needed. To simulate B realizations, W∗b , for b = 1, . . . , B, from the model545

in Equation (4.9):546

1. Let κb be a univariate random variable taking values in the set {1, . . . , K̂sim} with,547

P (κb = k) = π̂k|u∗ , k ∈ {1, . . . , K̂sim}.548549

2. Draw B random variables,550

W∗b ∼ N
(
µ̂
(κb)
W |U(u∗), σ̂

(κb)
W |U(u∗)

)
, b = 1, . . . , B.551

552
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If desired, the marginal mean and variance functions can be obtained by integrating over the553

mixture components as in Equations (3.12) and (3.13).554

4.2. Comparison to ground station data. In this subsection we evaluate how well our555

method performs by comparing ground station observations of total column CO2 at locations556

where they exist, to our simulated conditional distributions and to distributions implied by557

the OCO-2 operational retrieval output. We utilized ground-based CO2 data collected by558

the Total Carbon Column Observing Network (TCCON) [54] and coincident retrievals from559

OCO-2. TCCON data are used to validate OCO-2 XCO2 point estimates delivered by the560

mission [55]. That validation procedure also involves comparing XCO2 estimates to TCCON,561

among other things, but it does not include any analysis of the operationally-derived variance562

or the accuracy of the Gaussian assumption.563

We quantified performance of conditional distribution estimates with two simple metrics.564

The first is the position of the observed TCCON value within the conditional distribution,565

Gop(XT ) = Pop(X ≤ XT ) ≈ Φ
(

XT ; X̂, Ŝ
)
,566

Gs(XT ) = Ps(X ≤ XT ) ≈ 1

B

B∑
b=1

I (W∗b ≤ XT ) ,(4.10)567

568

where op and s denote operational and simulated conditional distributions, respectively. The569

scalar quantity Ŝ is the conditional variance of XCO2 given the observed radiance, as estimated570

by the retrieval algorithm through a linear approximation [2]. XT is the TCCON value,571

Φ(x;µ, σ2) is the value of the Gaussian cumulative distribution function with mean µ and572

variance σ2 evaluated at x. The variable B is the number of draws from the simulated573

distribution used to approximate it, and W∗b is the b-th draw. Finally, I(·) is the indicator574

function taking value one if its argument is true and zero otherwise. Good performance is575

achieved when the TCCON value is centrally located, and poor performance is indicated by a576

TCCON value far out in a tail. So values of Gop(XT ) and Gs(XT ) near 0.5 are judged superior577

to those that are close to zero or one.578

The second metric is the bias of the conditional mean relative to the TCCON value:579

βop(XT ) =
(

X̂−XT

)
and βs(XT ) =

(
1

B

B∑
b=1

W∗b

)
−XT .(4.11)580

581

This is important because the primary use of OCO-2 XCO2 estimates is as input into flux582

inversion models. These models assume that XCO2 estimates are unbiased. If bias does583

nonetheless exist, it can lead to spurious flux estimates, particularly if there are systematic584

spatial patterns.585

To ensure direct comparability, we limited our analysis to OCO-2 soundings with ge-586

ographic centers in very small regions of size 0.01◦ in both latitude and longitude around587

TCCON locations. One degree of longitude is approximately 100 kilometers at the Equator,588

and less as one moves north or south. Since OCO-2 footprints span 1.29 kilometers of longitude589
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and 2.25 kilometers of latitude, this restriction limited the soundings we used to those that590

contain the TCCON site. To identify a single TCCON value to serve as a benchmark, we used591

the value for which the time of acquisition was between the earliest and latest sounding times,592

among those soundings satisfying the 0.01◦ spatial proximity criterion. In some weeks at some593

TCCON sites, there were no data available either because there was no TCCON observation594

within the very brief overpass time window, or because there were no successful retrievals595

within the spatial overlap region. There was never more than one TCCON benchmark value.596

For illustration, consider four soundings’ conditional distributions shown in Figure 8.597

These four are representative of the types of relationships between operational and simulation-598

based conditional distributions observed in our analysis. In the figure, the top two panels are599

soundings covering the Lamont, OK TCCON site during the week of November 2, 2015, and600

the bottom two panels cover the TCCON site at Tsukuba, Japan during the week of May601

13, 2016. There are a total 132 and 77 soundings that satisfy the 0.01◦ spatial criterion,602

respectively. In all panels, the red curves are the simulation-based conditional distributions’603

approximations based B = 100, 000 realizations of W∗b , and the blue curves are Gaussian dis-604

tributions with means and variances equal to the operationally retrieved moment estimates.605

The green vertical lines are the TCCON values. In both Lamont results (top row), the bias of606

the simulation-based estimate is smaller than that of the operational estimate. The left panel607

shows a case in which XT is more consistent (in the sense of being more centrally located) with608

the simulation-based distribution than with the operationally derived. For Tsukuba (bottom609

row), the absolute value of the bias is actually lower for the operational estimate, and the610

biases are of different signs. The TCCON value is much more consistent with the simulation-611

based distribution than with the operational distribution in the left panel, but the TCCON612

value is consistent with neither distribution in the right panel.613

In Figure 9 we summarize comparisons like those in Figure 8, for all 944 soundings614

used in our analysis. The horizontal axis reflects the difference between the operational615

and simulation-based conditional distributions with respect to the centrality of the TCCON616

value in those distributions. The vertical axis is the difference between the absolute biases617

of the means of the two distributions, relative to TCCON. Points in the lower-left quadrant618

(colored blue) represent those soundings for which the simulation-based method is superior in619

both metrics. These comprise 63.1 percent of soundings used in this analysis. Points in the620

upper-left quadrant (colored green) represent those footprints for which the simulation-based621

method is superior with respect to the cumulative distribution function metric, but inferior622

with respect to the bias metric. These comprise 25.7 percent of soundings. For most of these,623

the difference in absolute bias is less than 1.25 parts per million. 11.2 percent of the footprints624

fall in the upper-right quadrant (colored red). In these cases the operational distribution is625

superior to the simulation-based distribution on both metrics. An example of such a case626

would be where the operational retrieval does very well, having mean very near the TCCON627

value and a low reported variance, while the simulation-based distribution has a long right (or628

left) tail. This will pull the mean of the simulation-based distribution away from the TCCON629

value, and cause the TCCON value to be less centrally located. However, given the tendency630

of operational variance estimates to be too low, such occurrences should be interpreted with631

caution.632

As a final step in the evaluation of our methodology and comparison of it to that invoked633
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Figure 8. Comparisons of typical operational (blue) and simulation-based (red) posterior distributions, to
TCCON values (green). Top-left and Top-right: Two soundings near Lamont, OK during the week of November
2, 2015. Bottom-left and bottom-right: Two soundings near Tsukuba, Japan during the week of May 13, 2016.

by the operational retrieval algorithm, we examine coverage probabilities. The conditional634

distributions of soundings coincident in time and space with a TCCON site can be used to635

derive an ensemble of confidence intervals for the corresponding TCCON value. Approxi-636

mate (1− α) percent confidence intervals for TCCON XCO2 derived from the simulated and637

operationally-retrieved conditional distributions, respectively, are638 [
Q s
α/2 , Q

s
1−α/2

]
and

[
Q op
α/2 , Q

op
1−α/2

]
,(4.12)639

640

where Qα/2 and Q1−α/2 are the (α/2) and (1− (α/2)) empirical quantiles of the appropriate641

distributions.642

For a given TCCON site and calendar week, let N be the number of soundings that satisfy643

the spatial proximity criterion of 0.01◦ and for which there exists a single TCCON estimate644
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Figure 9. Comparisons of operational and simulation-based conditional distribution estimates using two
metrics. The horizontal axis is the difference in how centrally located the TCCON observations is with respect
to the two distributions. The vertical axis is the difference in the distributions’ means (in ppm) relative to
TCCON. Each point represents a sounding that overlaps a TCCON site. The points’ colors correspond to the
quadrant of the space in which they lie.

of XCO2, XT . We computed,645

p s1−α =
1

N

N∑
n=1

I
(

XT ∈
[
Q s
α/2 , Q

s
1−α/2

])
, and(4.13)646

p op1−α =
1

N

N∑
n=1

I
(

XT ∈
[
Q op
α/2 , Q

op
1−α/2

])
,(4.14)647

648

for each site-week for α = 0.05 and α = 0.50. Results are displayed in Table 1.649

None of the empirical coverage probabilities derived from the operational distributions650

agree with the nominal coverage. In contrast, the simulation-based coverages meet or exceed651

the nominal values for five of the eight site-weeks. In addition, empirical coverage exceeds652

the nominal value for p s.50 at Orleans, and is close for Lauder at p s.95. Performance is poor for653

Sodankyla, which is at high latitude, and is a notoriously difficult site for retrievals in general.654

We plan further in-depth investigations to understand how different geographic conditions655

influence performance of the simulation-based method.656
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Site Week p op.95 p op.50 p s.95 p s.50 N

Bialystok, Poland 2016-02-17 0.013 0.000 1.000 1.000 80
Darwin, Australia 2015-08-10 0.663 0.366 0.970 0.782 202
Lamont, OK USA 2015-11-02 0.288 0.143 1.000 0.909 132
Lauder, New Zealand 2016-02-29 0.449 0.170 0.932 0.441 118
Orleans, France 2015-11-02 0.627 0.322 0.746 0.661 59
Sodankyla, Finland 2015-08-20 0.533 0.133 0.600 0.267 15
Tsukuba, Japan 2016-05-13 0.390 0.169 0.974 0.818 77
Wollongong, Australia 2015-11-24 0.272 0.115 0.973 0.778 261

Table 1
Coverage probabilities over ensembles of confidence intervals derived from operational and simulation-based

conditional distributions. Values in green indicate empirical coverages at least as large as nominal values.

5. Summary and discussion. The primary challenge addressed by this work is that of657

providing uncertainties for estimates of physical states produced by remote sensing retrieval658

algorithms. We define uncertainty as the conditional distribution of the true state given the659

estimated state; this is a probabilistic quantification of what remains unknown about the660

QOI after seeing the estimate. The methodology we propose approximates this conditional661

distribution for every sounding for which a retrieved state point estimate exists.662

Our method is similar in spirit to the bootstrap bias correction in using the relationship663

between an original sample and a set of resamples taken from it, as a proxy for the relationship664

between the unknown truth, and the original sample itself. Here, we extend the idea beyond665

bias correction alone. We model the full conditional distribution of the true state given a666

corresponding retrieved state, as a weighted mixture of Gaussian regressions. Then, any667

operationally-retrieved state estimate can be used as a predictor.668

There are a number of significant benefits of this approach. First, it does not require669

enumerating particular sources of uncertainty in order to be complete. The mixture regres-670

sion models capture what is known about the aggregated effects of all uncertainty sources,671

including “unknown unknowns” (e.g., higher-order interaction effects) in the operational pro-672

cessing chain. This is, of course, assuming that the resampling procedure produces repre-673

sentative ensembles of what the operational observing system encounters. Second, forward674

model structural and parametric uncertainties are approximated by the model discrepancy675

term. Identifying the role of spectral residuals in estimating model discrepancy opens the676

door to future experiments and empirical analyses that may help improve the forward model.677

Third, the entire approach is independent of how the retrieved state estimates are produced.678

Fourth, since we modeled the joint and conditional distributions as Gaussian mixtures, these679

distributions may have general non-Gaussian forms. Finally, the entire procedure is executed680

separately from the operational retrieval process, and can be performed without interfering681

with operations. Once the simulations are run and the model is fitted, the rest of the compu-682

tation is very fast and easily applied to the operational output.683

Looking to the future, we are exploring spatial and spatio-temporal extensions to our684

method. Instead of simulating ensembles of independent and identically distributed synthetic685

true states, we simulate entire spatial fields (e.g., [26]) at once. We are now applying that idea686
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in the context of NASA’s ECOSTRESS mission [46]. It allows us to quantify the ability of687

inferences based on remote sensing retrievals to capture spatial features as well as individual,688

per-pixel behavior. It also presents new computational and modeling challenges because of689

high dimensionality and massive data set size. In the mean time, we continue work to improve690

the characterization of sounding-by-sounding uncertainty quantification for operational remote691

sensing missions like OCO-2.692

Appendix A. Generating the synthetic true state vector ensemble. This appendix gives693

additional details of how we generate realizations of Xsim
land. The state vector includes a diverse694

collection of atmospheric, surface, and instrument properties. These include the vertical695

profile of CO2, scaling factors for temperature and water vapor, surface pressure, aerosol696

concentration and vertical position information, surface albedo, solar-induced fluorescence697

(SIF), and observation wavelength offsets [22]. Due to this combination of constituents, actual698

OCO-2 retrievals are a logical source for reference data to inform the simulations. We assemble699

OCO-2 retrieval products for the region-week combinations represented in our templates. We700

make a few modifications to the template sets for realism and pragmatism. First, the OCO-2701

retrievals of aerosol amounts have not been reliably validated [33], so we replace them with702

values from the MERRA-2 reanalysis [40]. The MERRA-2 aerosol products are available703

globally every three hours at a grid spacing of 0.5◦ latitude × 0.625 longitude. We match704

each OCO-2 retrieval to the closest MERRA-2 location and time. The ergodic assumption705

is modified for the state vector elements corresponding to surface pressure and instrument706

dispersion. The variability across a template for these components is partially predictable707

due to changes in elevation, meteorology, and instrument calibration. This knowledge is708

captured in a variable retrieval prior mean for these quantities, so we subtract the prior mean709

vector used in the operational OE retrieval from the retrieved state for these elements in our710

template sets. A value for a reference sounding is added back when the simulation is executed,711

as discussed in Section 4.1.2712

We filter out any OCO-2 soundings for which the retrieval algorithm did not converge to713

a solution within the maximum number of iterations allowed. This information is provided714

in a variable called outcome flag that is provided in the data product. We also filter out any715

soundings for which an additional quality indicator, called warn level [28], does not have value716

less than or equal to 15. Finally, because some state vector elements are on different scales,717

those elements with variability on the order of 10−4 or less are multiplied by 1000 in order to718

avoid problems with covariance matrix inversion later. This rescaling is undone after fitting719

the mixture model.720

To generate the synthetic truth ensembles for each land template, we fit a Gaussian721

mixture model, P̃r, r = L1, . . . ,L11 using the densityMclust function in R’s mclust package722

[47]. The procedure is described in Section 3.2. Here, we set the maximum number of723

components in the mixture to 15, which is the largest number that we felt we could legitimately724

interpret scientifically, and reduce the dimension of the input state vectors by projecting them725

into the space of the leading principal components (see Section 3.2) using a threshold of726

γ = .95. Both choices are based on balancing the quality of the GMM fit against the time727

it takes to fit the models. We perform this step only if the number of screened data vectors728

in the template is at least ten times the number of leading eigenvectors used for dimension729
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reduction. We abandon any template strata which do not meet this criterion. Denote the730

simulation “marginal distribution” for template r by,731

P̃r = GMM

(
K̃sim
r ,

{
η̃rk, Ω̃rk, p̃rk

}K̃sim
r

k=1

)
, r = L1, . . . ,L11,(A.1)732

733

where all mean vectors and covaraince matrices are on the original physical scale.734

Appendix B. The forward function and its parameters. The OCO-2 full-physics (FP)735

forward model includes three key modules that we describe briefly, and we refer the reader736

to [2] for additional details. The FP forward model first solves the equation of radiative737

transfer (RT) at fine spectral resolution. Some discussion of the transformation from state738

vector elements to model inputs is provided by [19]. Next, the wavelength-dependence of the739

solar spectrum is applied to the solution. The final step of the FP model evaluation is the740

convolution of the fine-resolution spectral response with the OCO-2 instrument line shape741

(ILS), or spectral response function, and the result is the forward model evaluation for a742

generic synthetic state vector Xsim,743

Ysim
0 = F1

(
Xsim,b1

)
,(B.1)744745

where b1 are forward model parameters that are also used in the retrieval algorithm.746

At least one special circumstance of the simulation experiment sets it apart from the cir-747

cumstances of the actual observing system: the simulated state vectors do not have latitudes748

and longitudes associated with them. Thus, they have no location information other than that749

they were generated by a synthetic marginal distribution distribution associated with a tem-750

plate. Actual forward model evaluations are dependent on geographic location because this751

determines their observing geometry, including sun angle and other details of the observing752

configuration. To overcome this problem, we use the observing geometry of a template “ref-753

erence sounding” for all forward model evaluations of synthetic state vectors drawn from the754

template’s synthetic marginal distribution. Reference soundings are typically located near the755

geographic center of the template so as to be generally representative of observing conditions.756

The observing geometry parameters are some of the components of the parameter vector757

b1. Other components include wavelength-specific parameters that describe aerosol scattering758

and gas absorption properties. Similarly, the instrument line shape (ILS) and solar spectrum759

are represented by parameters varying with wavelength that are subject to uncertainty. Con-760

nor et al. [5] assess the linear sensitivity of the operational OCO-2 retrieval to several of these761

parameters individually under a range of geophysical conditions. As we describe in 4.1.4, we762

represent forward model misspecification and parameter uncertainty collectively through an763

additive model discrepancy in our simulation framework.764

Appendix C. Estimation of model discrepancy parameters. This appendix outlines765

our procedure for estimating the parameters of the model discrepancy distribution introduced766

in Section 4.1.4. The definition of model discrepancy is the difference between the true and767

modeled radiances due only to the difference between F0(·,b0) and F1(·,b1), both evaluated768

at the true state, X,769

δsim = F0(X,b0)− F1(X,b1).770771
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However, we only have access to F1(X̂,b1), which motivates the approximation,772

δsim ≈ F0(X,b0)− F1(X̂,b1)−
[
F1(X

sim,b1)− F1(X̂
sim,b1)

]
.(C.1)773

774

Let Y ≡ F0(X,B0) + ε, and Ŷ ≡ F1(X̂,b1). The quantity
(
Y − Ŷ

)
is the spectral residual,775

and is routinely produced as part of the retrieval process. The term in the square brackets776

can be computed from a simulation with no model discrepancy, where the noiseless forward777

model evaluation is readily available. The discrepancy can be written,778

δsim ≈
(
Y − ε− Ŷ

)
−
(
Ysim

0 − Ŷsim
)
,779

δsim + ε ≈
(
Y − ε− Ŷ + ε

)
−
(
Ysim

0 − Ŷsim
)
,780

=
(
Y − Ŷ

)
−
(
Ysim

0 − Ŷsim
)
.(C.2)781

782

Therefore the sum of the discrepancy and noise can be approximated with the operational783

spectral residuals and simulation forward model evaluations. Taking the expectation and784

variance of δsim + ε facilitates estimation of µ̃δ and Σ̃δ.785

E(δsim + ε) ≈ E
(
Y − Ŷ

)
− E

(
Ysim

0 − Ŷsim
)
,786

µ̃δ + 0 ≈ 1

N

N∑
n=1

(
Yn − Ŷn

)
− 1

M

M∑
m=1

(
Ysim

0,m − Ŷsim
m

)
,(C.3)787

788

where n = 1, . . . , N indexes actual OCO-2 retrievals in the template-week being studied, and789

m = 1, . . . ,M indexes trials of the simulation for that template-week. For the variance, we790

assume that the discrepancy and measurement noise are uncorrelated. Further, the spectral791

residuals from the actual OCO-2 retrievals are independent of the forward model evaluations792

from the simulation, by construction. Then,793

cov(δsim + ε) ≈ ĉov
(
Y − Ŷ

)
+ ĉov

(
Ysim

0 − Ŷsim
)
,794

Σ̃δ + Σε ≈ ĉov
(
Y − Ŷ

)
+ ĉov

(
Ysim

0 − Ŷsim
)
,795

Σ̃δ ≈ ĉov
(
Y − Ŷ

)
+ ĉov

(
Ysim

0 − Ŷsim
)
−Σε,(C.4)796

797

where ĉov
(
Y − Ŷ

)
and ĉov

(
Ysim

0 − Ŷsim
)

are suitable empirical estimates of the covariance798

matrices of the spectral residuals and simulation forward model evaluations, respectively.799

We have found that outliers are often present in the spectral residuals, so we implement800

an estimate that combines a rank correlation matrix with robust estimates of the standard801

deviations for individual wavelengths. In addition, there is no guarantee that the right-hand802

side of Equation (C.4) yields a positive definite matrix, particularly when the variability of803

the model discrepancy is similar to or smaller than the measurement noise. To remedy this,804

we simulate model discrepancy with a low-rank approximation by retaining only the leading805

principal components.806
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